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a b s t r a c t

In this work, yielding and post yielding effects are analyzed using the idea of the inhomogeneous
distribution of strain in polymers under deformation. This idea is directly connected with the free volume
concept, as created in the polymeric bulk during the frozen in process, and or the density fluctuations
combined with other type defects. A simple strain density distribution function is assumed, following
experimental results available from techniques such as positron annihilation lifetime spectroscopy
(PALS). Hereafter, a functional form of the rate of plastic deformation is extracted, which will be
combined with a given kinematic formulation. The proposed analysis is tested with experimental data of
polystyrene (PS) and PS/SiO2 nanocomposites. The incorporation of nanosized fillers into the polymeric
bulk, strongly affects the free volume distribution and/or the distribution of defects related with density
fluctuations. This fact is reflected in the model parameter values, and their variation in respect to the
different material types. With the proposed analysis, it has been proved that all features of yield process,
including strain softening and strain hardening effect are easily described.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Glassy polymers, when subjected to a sufficiently high stress
field, undergo permanent deformation. This plastic deformation or
yielding is manifested by a stress peak, which is followed by a stress
softening, and hereafter strain hardening. Yielding is affected by
the imposed strain rate, temperature and pressure conditions as
well as thermal prehistory. For that reason yielding of glassy
polymers has been the subject of a lot of works, which are based
both on continuum mechanics in large deformations and on
micromechanics modeling [1–7]. The yield behaviour of represen-
tative glassy polymers, such as polystyrene, polymethylmethacrylate
and polycarbonate has been extensively examined [6–8]. Two main
categories of theories, based either on viscous flow or plastic
deformation in metals are usually applied for the description of
polymer’s yielding. The earliest models proposed that yield occurs
by liquid-like flow when adiabatic heating raises the local
temperature to Tg, or when tensile strain increases the free volume
sufficiently [9]. Considering that the glassy state is a supercooled
liquid, the deformation process can be treated as a molecular
process that mainly occurs above Tg. Such a large-scale diffusion
motion is generally inconsistent with intrinsic strain softening and
subsequent strain localization. However, under the combined
influence of stress and thermal energy the plastic strain rate is
determined by the Eyring concept [10]. A lot of treatments for
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yielding in glassy polymers have been applied in this concept.
Referring to models that employ molecular scale deformation of
polymer chains to account for yield, attention must be paid to
Argon’s theory, that deals explicitly with intermolecular resistance
to shear yielding [3].

This analysis couples bond rotation (kink pair formation) to
intermolecular energy calculated with continuum elasticity
theory, and has the macroscopic yield stress related directly with
temperature and strain rate. The Argon results closely resemble
the Eyring [10] model, which considers plastic transformation as
a thermal activated process, but its special formulation leads to
temperature and rate dependencies that are virtually indistin-
guishable from Eyring approach. The important conclusion that
resistance to plastic deformation at the yield point is intermo-
lecular in origin does not account, however, in an obvious way for
strain softening. To overcome this, BPA model [5] was introduced,
where Argon’s concept of athermal strength has been varied by an
empirical equation as plastic deformation proceeds. Later, Hasan
and Boyce [7], trying to capture all plasticity features of amor-
phous polymers including temperature treatments, developed
a constitutive model, by considering a distribution in the activa-
tion energy barrier to deformation in a thermally activated model
of yielding process. In their treatment, a plausible assumption of
‘‘pseudo-Gaussian’’ distribution of activated energy barriers is
made, which is based on a similar distribution of the amount and
size of free volume holes inside the substance of amorphous
polymers. Yield and free volume concept are historically associ-
ated inspite of the fact that the latter has been doubted many
times [9]. Positron annihilation lifetime spectroscopy (PALS) [8]
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was been used to probe free volume in liquid and glassy poly-
mers. This method provides unique information about the prop-
erties of subnanometer size local free volume (holes) appearing
due to the structural disorder in amorphous polymers [11].
Through this technique, the mean value and the size distribution
of these holes can be estimated. These values, when combined
with pressure–volume–temperature experiments, can lead to the
calculation of the number of holes and their entire volume frac-
tion [12–15].

In the present work, the concept of free volume and or density/
defect’s fluctuations will be the basic idea for a constitutive
description of yielding in glassy polymers. It will be shown that not
only the amount of free volume but also the way it is distributed
within the bulk material plays a decisive role during yielding of
glassy state. The distributed nature of free volume (defects) will be
related with the strain distribution and finally with the rate of
plastic deformation. Based on this idea, which as abovementioned,
was initially applied by Hasan and Boyce [7], we introduce a density
distribution function for the imposed strain on the representative
volume of deformed material. In this way the strain inhomogeneity,
that is established during plastic deformation, will be taken into
account and as it will be shown the subsequent strain softening
effect can also be described. This can be achieved in the frame of
a proper kinematic formulation. For this reason, we will avoid the
common kinematic plastic formulation of multiple decomposition
of deformational tensor, which does not take into account the
advantage of strain inhomogeneity across the representative
volume element. Instead of this, the kinematic formulation intro-
duced by Rubin [16,17] will be applied. This theory, initially
proposed for crystalline materials, has been successfully applied to
describe the yield response of amorphous glassy polymers [18,19].
Our analysis has been confirmed with the experimental results of
pure polystyrene (PS) and a series of PS/SiO2 nanocomposites. The
incorporation of nanofillers into the bulk matrix creates a different
free volume (or defects) distribution; so the materials studied, are
of similar structure, however, a different degree of homogeneity is
expected. Tensile and compressive results of pure PS and PS/SiO2 at
three different weight fractions were performed at temperature of
85 �C, where the viscoplastic response of the materials is man-
ifested. The simulated results appear to have a very good agreement
with the experimental data, while the same set of parameters has
been used for both types of experiments.

2. Free volume distribution

Several experimental methods indicate that the amorphous
glassy state is not homogeneous at the microscopic level. Small-
angle X-ray scattering technique proved to be a convenient way of
determining density fluctuation of amorphous polymers in liquid
and glassy state, and its utility in the study of glassy polymer was
first demonstrated by Wendorff et al. [20]. Curro and Roe [21], on
the other hand, utilized the technique of X-ray scattering to
correlate the change of the specific volume with that in the density
fluctuation, for three widely used polymers (PS, PMMA, PC).
Following their experimental data Curro and Roe [22] derived an
equation which relates explicitly the density fluctuation of glassy
state with the free volume fraction (or hole volume) in amorphous
polymers. Considering the value of 0.025 for the free volume
fraction (valid for a wide variety of polymers through the WLF
equation [23]), they estimate the cavity size in glassy polymers
(z0.5 nm in diameter), which is in agreement with data on the
positron annihilation lifetime spectroscopy (PALS) and ultrasonic
velocity obtained by Mathotra and Pethrick [24]. Following these
results, it is reasonable to assume that inside the matrix of amor-
phous polymers, free volume with a more generalized notion,
constituted from holes of varying sizes, is randomly distributed
around polymer molecules. It will be shown that the way free
volume is distributed inside the bulk matrix plays a decisive role to
the material’s macroscopic response. Following the experimental
evidence provided by PALS [25] the radius distribution f(R) is
expressed as:

f ðRÞ ¼ 2dR
�

cos
2pR

Rþ dR
� 1

�
xð1=s3Þ
ðRþ dRÞ2

(1)

where x(1/s3) is the inverse of the longest lifetime, dR expressing
the thickness of an electron layer on the wall of a hole, estimated to
be equal to 0.166 nm, and R is the radius of a spherical PALS free
volume.

Then it is possible to obtain the free volume distribution as:

gðVÞ ¼ f ðRÞ
4pR2 (2)

For a variety of glassy polymers Eq. (2) is represented with one
characteristic peak, and is correlated with some materials charac-
teristics, such as synthesis, curing schedule, thermal treatment,
etc. [25].

In what follows, a free volume distribution function will be
extracted, in the frame of statistical ensemble in thermodynamic
equilibrium. The main assumption here is that in equilibrium
state, above Tg, the macromolecules of a polymeric glass are in
a state of random thermal motion. Some of these molecules may
pull apart in such a way, as to open a void or a hole in the
liquid.

In a rather simplified manner [26], it is assumed that each region
of free volume comes in a spherical shape of radius R and that the
energy of the free volume is equal to ER¼ 4pgR2, where g is the
surface energy per unit area, almost equal to the surface energy of
the liquid. According to the Boltzmann distribution, the possibility
P for a macromolecule to neighbor with a hole of radius R at
a certain position r is given by the expression:

P ¼ c exp
�
�ER

kT

�
where ER ¼ 4pgR2 (3)

where c is a constant, k is the Boltzmann constant and T is the
temperature.

In analogy with statistical physics, where the Maxwell distri-
bution of molecular speeds in an ideal gas [27], it can be extracted
that the mean number of states (molecules) neighboring with holes
with radius R between R and Rþ dR is given by:

FðRÞ ¼ Nc4pR2 exp

 
� 4pgR2

kT

!
(4)

where N is the number of states at positions with hole radius
between R and Rþ dR. The mean value of radius R can be easily
extracted from Eq. (4) at the position where the first derivative of
function F(R) becomes zero:

dFðRÞ
dR

����
R¼R
¼ 00R ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pg=kT

p (5)

Following Eq. (4), we can write in analogy, the free volume distri-
bution function g(Vf)¼ F(R)/(4pR2):

g
�

Vf

�
¼ Nc exp

 
� 4pgR2

kT

!
(6)

By setting N ¼ Vf=V f where V f is the mean value of the total free
volume Vf, and considering that constant c of Eq. (6) can be calcu-
lated taking into account that the integration of the density prob-
ability function will be equal to unity, we have:
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dVf ¼ 1 (7)

Eq. (7) gives c ¼ 1=3V f , therefore the probability density function
is given by:

g
�

Vf

�
¼ 1

3
Vf�

V f

�2 exp

 
�
"

Vf

V f

#2=3!
(8)

Eq. (8) is the probability density distribution function for the free
volume of the liquid state. It is also assumed that this equation is
valid in the glassy state as well, considering that this free volume
distribution is established during the solidification process. The
above procedure is presented in detail in Ref. [26].

We are referring now to a state of the representative volume V,
where a strain field 3 has been applied, high enough for plastic
deformation to occur. The regions which are characterized with the
largest amount of free volume, will be the most probable candi-
dates for yield transition, that takes place at a critical strain 3. The
corresponding probability for this event to take place inside the
material will be given by the following equation,

gð3Þ ¼ 1
3

3

ð3Þ2
exp

�
�
h3
3

i2=3
	

(9)

where 3 expresses now the mean value of the distributed strain into
the material. Applying this equation, the calculation of the number
of sites which have been subjected to plastic transition, after strain
3 has been imposed, is given by the following integral,

Nð3Þ ¼
Z 3

0
d3 gð3Þ ¼

Z 3

0

1
3

3

ð3Þ2
exp

�
�
h3
3

i2=3
	

d3 (10)

The above obtained integral can be further applied for the calcu-
lation of the rate of plastic strain deformation _3y if we assume that
each site is transformed to yield state by a constant rate _k, which
is calculated from the limited case of plastic saturation as
_k ¼ _a=aðam

s � 1Þ [18]. The quantity am
s is the saturated stretch ratio

and the corresponding saturated strain is obtained by dividing the
stress with corresponding modulus in the post yield region, before
strain hardening occurs.

The corresponding plastic strain rate equation will be given by
the following formula,

_3y ¼ _kNð3Þ ¼
_a

a


am

s � 1
� 1

3

Z 3

0

3

ð3Þ2
exp

�
�
h3
3

i2=3
	

d3 (11)

The value of the characteristic strain 3, around which the above
introduced distribution function works, is related with a specific
microstructural parameter, expressing the strain above which no
more elastic strain is developed.
Fig. 1. Tensile stress–strain curves with a strain rate of 2.77�10�4 s�1, at 100 �C, for all
materials tested.
3. Constitutive equations

As already mentioned, a number of factors strongly affect the
yield behaviour of glassy state, namely strain rate, pressure,
temperature as well as the thermal prehistory. Apart from this, when
a constant strain below yield point is applied on amorphous poly-
mers, the material undergoes a nonlinear viscoelastic behavior with
a terminal stress below yield stress as well. These observations can
give the impression that yield phenomenon in polymers is funda-
mentally different from that in metals that follow the yield criteria,
and that it might be a special and unique nonlinear viscoelastic
effect. Regarding the length scale of these viscoelastic and visco-
plastic phenomena, some differences also are recorded, given that
the characteristic size of shear bands associated with plastic
phenomena is of the order of some micrometers [28,29] that exceeds
three orders of magnitude the characteristic length of pure visco-
elastic effect. What is true, however, is that these two phenomena
coexist in the mechanical behavior of polymers [5], and is a matter of
total strain and strain rate applied on the material which decides
which of these two effects will be prevailed in respect to the other
one. Matsuoka [30], who describes this behavior systematically in
a relevant book, comes to the result that there is a critical strain 3*

which controls the viscoplastic response of glassy polymers. When
the strain rate _3 is slow ð_3si < 3*Þ where si are a set of relaxation
modes describing the viscoelastic behavior of polymers the yield
stress sy is never reached and the final steady state stress is that of
linear viscoelasticity equal to Eisi _3, with Ei, the moduli of the corre-
sponding modes. If the material exhibits no stress overshoot in the
yield stress, then 3* ¼ _3si, and the steady state stress is equal to the
yield stress sy. When stress overshoot is observed, which is common
in most glassy polymers, 3* < _3si, and beyond yielding, a transition
takes place with a new structure in the material state, resulting to
new smaller value of si, which is equal to 3*=_3.

After a more detailed analysis, Matsuoka concluded that strain
magnitude is a crucial factor in determining whether the visco-
elastic or plastic path is followed. Regardless of transient or steady
state conditions, it depends on whether 3 < 3* or 3 > 3*.

This behavior according to Matsuoka can be approximated by
a single Maxwell equation:

s ¼ E3*

�
1� exp

�
� 3

3*

	�
(12)

where E is the apparent modulus and 3 is the viscoelastic strain.
The estimation of critical strain 3* can be made as follows: Most
glassy polymers dilate under tensile stress by the amount
DV=Vy3ð1� 2nÞ, where n is the Poisson ratio [30]. Making further
the plausible assumption that at yielding the total volume change is
related with the fractional free volume, and the corresponding
strain is the critical strain 3* of our analysis, it can be written that:

3* ¼
byf

1� 2n
(13)

where byf is the average value of fractional free volume.
Eq. (12) in combination with a kinematic formulation that

separates the total deformation into plastic and elastic parts,
proposed by Rubin [16,17] is used to describe the yield behaviour of
the materials. This kinematic formulation is presented in detail
elsewhere [18] for three dimensional problems. In the case of
uniaxial deformation the time evolution of the elastic (viscoelastic)
stretch ratio am is given by the expression:



Fig. 2. Tensile stress–strain curves with a strain rate of 2.77�10�4 s�1, at 85 �C, for all
materials tested.

Fig. 4. Tensile stress–strain curves with a strain rate of 2.77� 10�4 s�1, at 85 �C, for
pure PS. Thick lines: experimental data, thin lines: simulated results.
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with the initial condition am(0)¼1, n is the Poisson ratio and _a is the
imposed strain rate. It must be mentioned that the stretch ratio a is
equal (1� 3) in compression deformation tests and _3y is the rate of
plasticdeformation as it was specified earlierand expressed by Eq. (11).
4. Application on the viscoplastic response of a polymer
nanocomposite

4.1. Experimental

The tensile and compressive behaviour of polymer nano-
composites, based on Polystyrene (PS) and silica nanoparticles
(type Silica Aerosil R972), at 4, 8 and 10% per weight, will be
simulated through the proposed analysis. Given that these mate-
rials exhibit a brittle behaviour at room temperature, the experi-
mental results at higher temperatures namely 85 and 100 �C will be
examined. Tensile tests were carried out with an Instron 1121 type
tester, with dumbbell type specimens, according to ASTM D 638,
and at an effective strain rate of 2.77�10�4 s�1. The tests were
performed with a high temperature chamber series 3119-406 of
Instron Ltd. The corresponding results are presented in detail in
Ref. [31]. Moreover, in the present work, compressive experiments
were performed at 85 �C for a more systematic analysis of the
Fig. 3. Compressive stress–strain curves with a strain rate of 2.5�10�3 s�1 at 85 �C, for
all materials tested.
materials under investigation. Cylindrical specimens with a mean
diameter of 10 mm and a height/diameter ratio equal to 1 were
used. The effective strain rate was 2.5�10�3 s�1. Nominal strain
measurements in all cases were obtained, as no extensometer could
be applied due to the presence of chamber. The experimental
results for tension at 100 �C, and tension and compression at 85 �C
are presented in Figs. 1–3 correspondingly.

4.2. Results and discussion

At 100 �C, which is a temperature above Tg, the nanoparticles do
not have any contribution to the mechanical response of the
material. This fact is reflected from Fig. 1 where the initial slope of
the stress–strain curves is almost the same for pure PS and PS-4%.
Also the observed behaviour is a pure viscoelastic one, exhibiting
a steady state stress sss equal to Es_3, where E is the apparent
modulus, _3 the imposed strain rate and s is a mean relaxation time
[30].

The higher nanosilica content, however (PS-8%, PS-10%), seems
to have a deterioration effect on the mechanical response at this
temperature. This fact means that particles and mainly particle-
agglomerates act as holes, leading to a small reduction in the load
bearing cross-section of the sample. For the sample PS-4% it may be
concluded that a better dispersion quality has been created.

Figs. 2 and 3 demonstrate the tensile and compressive stress–
strain curves at 85 �C correspondingly. It is observed from Fig. 2
that at 85 �C which is a temperature close but below Tg, the
materials exhibit a viscoplastic behaviour, with a stress peak at
Fig. 5. Tensile stress–strain curves with a strain rate of 2.77�10�4 s�1, at 85 �C, for PS–
4%SiO2. Thick lines: experimental data, thin lines: simulated results.



Fig. 6. Tensile stress–strain curves with a strain rate of 2.77�10�4 s�1, at 85 �C, for PS–
8%SiO2. Thick lines: experimental data, thin lines: simulated results.

Fig. 8. Compressive stress–strain curves with a strain rate of 2.5�10�3 s�1, at 85 �C,
for pure PS. Thick lines: experimental data, thin lines: simulated results.
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yielding, followed by a strain softening and hereafter a strain
hardening. The initial slope of stress–strain curves is slightly
increased as filler weight fraction is increased, while this trend is
reversed at 10%. Similar trend is also observed in yield stress,
showing a relatively higher value at 4% and lower values for the
other two filler contents.

In Fig. 3 the corresponding compressive stress–strain curves are
shown, exhibiting a sharp stress overshoot at yielding, followed by
an intense strain softening and slight strain hardening at higher
strains. The initial slope seems not to be greatly affected as filler
content increases, while yield stress is monotonically decreased
[32]. This behaviour is not typical in conventional particulate
composites, where yield stress is enhanced due to filler’s presence.
Also, concerning compressive behaviour, there are no experimental
data available for polymeric nanocomposites.

The experimental data as presented above will be analyzed and
simulated by implementation of the proposed model. As it has been
discussed, two main factors affect the yield behaviour of polymeric
structure, namely the accumulated strain (in respect to the
imposed strain rate) and the distributed nature in terms of various
types of defects into the polymeric bulk. Considering that a number
of free volume holes and/or other type defects are distributed into
the material, the imposed strain will be installed preferably in those
regions. Therefore, the onset of yielding will be facilitated in the
localized regions with extra free volume or higher density fluctu-
ations. Consequently, it is an interesting task to study further how
the presence of nanoparticles affects the yield behaviour of
polymers.
Fig. 7. Tensile stress–strain curves with a strain rate of 2.77� 10�4 s�1, at 85 �C, for PS–
10%SiO2. Thick lines: experimental data, thin lines: simulated results.
It is generally accepted that a nanoparticle will perturb the
conformation of the polymeric matrix around it, and it is a matter of
interest, whether such conformational changes are directly
responsible for the mechanical behaviour of the polymer [33]. The
presence of silica nanoparticles leads to the development of addi-
tional localized regions with different size and extent. When
the dispersed particles preserve the nanoscale size, which is of the
same order of radius of gyration of the macromolecules and the
interface width, some kind of better homogeneity might occur.
Therefore, one of the mechanisms through which nanoparticles
reinforce glassy polymers, is by reducing the degree of mechanical
inhomogeneity, that arises at nanometer length scales. Less inho-
mogeneity would render the composite material not only stronger
but also more resistant to failure.

Due to these postulations, the values of the model parameters,
namely the mean value 3 of the distribution density function for
strain inhomogeneity Eq. (11) and the characteristic strain 3*, may
support enough evidence to extract some interesting conclusions
about the micromorphology of the materials tested.

More specifically, 3* is directly related with the mean size of
various types of defects; so it is expected to increase with
increasing filler weight fraction. On the other hand, mean value 3 is
connected with the average amount of elastic strain that is imposed
into the material at the onset of yielding, or equivalently, expresses
the strain above which no more elastic strain is developed. As
discussed earlier, this parameter value is similar with the saturated
elastic strain 1� am

s . Therefore, its value can be estimated by
Fig. 9. Compressive stress–strain curves with a strain rate of 2.5�10�3 s�1, at 85 �C,
for PS–4%SiO2. Thick lines: experimental data, thin lines: simulated results.



Fig. 10. Compressive stress–strain curves with a strain rate of 2.5�10�3 s�1, at 85 �C,
for PS–8%SiO2. Thick lines: experimental data, thin lines: simulated results.

Table 1
Model parameter values

Sample 3* 3 as
m Cr (MPa)

PS 0.035 0.008 1.008 3
PS–4%SiO2 0.043 0.008 1.008 3
PS–8%SiO2 0.055 0.007 1.007 2
PS–10%SiO2 0.07 0.006 1.006 2.3
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dividing the almost stable value of stress, establishing after strain
softening, by the apparent modulus.

To further model the strain hardening, the concept of back stress
will be used, which expresses the resistance the material over-
comes, due to the molecular alignment after yielding. This align-
ment is related with changes in the configurational entropy of the
system. Back stress tensor introduced in Ref. [5] is expressed here
by a neohookean equation in simple extension:

sh ¼ Cr

�
l� 1

l2

	
(15)

Where l is the plastic stretch ratio in the loading direction, with
l¼ 1þ a� am and Cr is the rubbery modulus. The simulation of the
experimental data has been performed as follows: Combining Eqs.
(11) and (14), and making the integration in Eq. (14), the elastic
strain equal to am� 1 is obtained. Hereafter, it is combined with the
constitutive Eq. (12) for the stress calculation. To formulate the
strain hardening, the total stress is extracted by the further addition
of sh of Eq. (15). Due to the complexity of equations, numerical
integration of Eq. (14) using small time steps in the frame of the
software Mathematica [34] were made and finally the stress–strain
curves of Figs. 2 and 3 were simulated, and are presented as solid
lines in Figs. 4–7 for tension and Figs. 8–11 for compression. From
these plots, a satisfactory agreement between theory and experi-
ments in all cases is testified. The model parameter values are
summarized in Table 1. Modulus E of Eq. (12) was equal to
1079 MPa, and the Poisson ratio was considered as n¼ 0.3,
assuming that the filler’s presence does not strongly affect it. For
Fig. 11. Compressive stress–strain curves with a strain rate of 2.5�10�3 s�1, at 85 �C,
for PS–10%SiO2. Thick lines: experimental data, thin lines: simulated results.
both types of deformation, tension and compression, analogous
parameter values with the same trend, in respect to filler weight
fraction, were found to simulate all the specific features of the
experimental data. We only need to change the average initial slope
of the stress–strain curves, applying a higher value for compression,
due to pressure effect.

The critical strain 3* was increased for increasing filler content,
expressing this way, the increased average size of defects, devel-
oped as a consequence of the nanoparticle’s dispersion. On the
other hand, mean value 3 exhibits a slight decrement in respect to
filler content. The relative variation of model parameters 3*; 3 with
filler content is reasonable and compatible with the basic model
assumptions. Therefore, as filler weight fraction increases, the
greater defect’s size (higher 3*) facilitates the onset of yielding, and
a lower distributed mean strain 3 is required for the plastic tran-
sition of the localized regions.
5. Conclusions

In the present work, the yield effect of glassy state and the
complementary effect of strain softening are discussed with
a unified approach. A free volume distribution function is intro-
duced, based on equilibrium thermodynamics, which is further
treated as a strain distribution density function, due to the strain
localization and strain non-uniformity under loading conditions.
This function is combined with a proper kinematic formulation for
the separation of strain into plastic and viscoelastic part. Tensile
and compressive experimental data for PS and PS/SiO2 nano-
composites were used to test the model validity. Model parameters,
the same for both types of deformation, were reasonably varied for
various material types, expressing the existence of higher average
size defects due to the presence of nanofillers.
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